High-Resolution Microfluidic Paper-Based Analytical Devices for Sub-Microliter Sample Analysis
نویسندگان
چکیده
This work demonstrates the fabrication of microfluidic paper-based analytical devices (μPADs) suitable for the analysis of sub-microliter sample volumes. The wax-printing approach widely used for the patterning of paper substrates has been adapted to obtain high-resolution microfluidic structures patterned in filter paper. This has been achieved by replacing the hot plate heating method conventionally used to melt printed wax features into paper by simple hot lamination. This patterning technique, in combination with the consideration of device geometry and the influence of cellulose fiber direction in filter paper, led to a model μPAD design with four microfluidic channels that can be filled with as low as 0.5 μL of liquid. Finally, the application to a colorimetric model assay targeting total protein concentrations is shown. Calibration curves for human serum albumin (HSA) were recorded from sub-microliter samples (0.8 μL), with tolerance against ̆0.1 μL variations in the applied liquid volume.
منابع مشابه
High-Throughput Micro-Debubblers for Bubble Removal with Sub-Microliter Dead Volume
We present the fabrication and evaluation of microdebubblers that are able to remove large bubbles while keeping a very low dead volume. The devices use a polytetrafluoroethylene membrane that is permeable to air in order to filter air bubbles out of an aqueous sample. The dead volume of the devices is less than one microliter, but bubbles as large as 60 microliters can be removed. This simple ...
متن کاملThree-dimensional microfluidic devices fabricated in layered paper and tape.
This article describes a method for fabricating 3D microfluidic devices by stacking layers of patterned paper and double-sided adhesive tape. Paper-based 3D microfluidic devices have capabilities in microfluidics that are difficult to achieve using conventional open-channel microsystems made from glass or polymers. In particular, 3D paper-based devices wick fluids and distribute microliter volu...
متن کاملControlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants.
Control of surface chemistry and protein adsorption is important for using microfluidic devices for biochemical analysis and high-throughput screening assays. This paper describes the control of protein adsorption at the liquid-liquid interface in a plug-based microfluidic system. The microfluidic system uses multiphase flows of immiscible fluorous and aqueous fluids to form plugs, which are aq...
متن کاملReal-time Functional Analysis of Inertial Microfluidic Devices via Spectral Domain Optical Coherence Tomography
We report the application of spectral-domain optical coherence tomography (SD-OCT) technology that enables real-time functional analysis of sorting microparticles and cells in an inertial microfluidic device. We demonstrated high-speed, high-resolution acquisition of cross-sectional images at a frame rate of 350 Hz, with a lateral resolution of 3 μm and an axial resolution of 1 μm within the mi...
متن کاملA microfluidic thermometer: Precise temperature measurements in microliter- and nanoliter-scale volumes
Measuring the temperature of a sample is a fundamental need in many biological and chemical processes. When the volume of the sample is on the microliter or nanoliter scale (e.g., cells, microorganisms, precious samples, or samples in microfluidic devices), accurate measurement of the sample temperature becomes challenging. In this work, we demonstrate a technique for accurately determining the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Micromachines
دوره 7 شماره
صفحات -
تاریخ انتشار 2016